Yoosoon Chang Indiana University “ Nonstationarity in Time Series of State Densities ”

نویسندگان

  • Yoosoon Chang
  • Chang Sik Kim
  • Joon Y. Park
چکیده

This paper proposes a new framework to analyze the nonstationarity in the time series of state densities, representing either cross-sectional or intra-period distributions of some underlying economic variables. We regard each state density as a realization of Hilbertian random variable, and use a functional time series model to fit a given time series of state densities. This allows us to explore various sources of the nonstationarity of such time series. The potential unit roots are identified through functional principal component analysis, and subsequently tested by the generalized eigenvalues of leading components of normalized estimated variance operator. The asymptotic null distribution of the test statistic is obtained and tabulated. We use the methodology developed in the paper to investigate the state densities given by the cross-sectional distributions of individual earnings and the intra-month distributions of stock returns. We find some clear evidence for the presence of strong persistency in their time series. Key words and phrases: time series of cross-sectional and intra-period distributions, state density, nonstationarity, unit root, functional principal component analysis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonstationarity in Time Series of State Densities1

This paper proposes a new framework to analyze the nonstationarity in the time series of state densities, representing either cross-sectional or intra-period distributions of some underlying economic variables. We regard each state density as a realization of Hilbertian random variable, and use a functional time series model to fit a given time series of state densities. This allows us to explo...

متن کامل

Time Series Analysis of Global Temperature Distributions: Identifying and Estimating Persistent Features in Temperature Anomalies∗

We analyze a time series of global temperature anomaly distributions to identify and estimate persistent features in climate change. In our study, temperature densities, obtained from globally distributed data over the period from 1850 to 2012, are regarded as a time series of functional observations that are changing over time. We employ a formal test for the existence of functional unit roots...

متن کامل

Determination of Climate Changes on Streamflow Process in the West of Lake Urmia With Used to Trend and Stationarity Analysis

One of the most important hydrological time series task is to determine if there is any trend in the data and how to achieve stationarity when there is nonstationarity behavior in data. Detecting trend and stationarity in hydrological time series may help us to understand the possible links between hydrological processes and global climate changes. In this study yearly, monthly and daily stream...

متن کامل

Determination of Climate Changes on Streamflow Process in the West of Lake Urmia With Used to Trend and Stationarity Analysis

One of the most important hydrological time series task is to determine if there is any trend in the data and how to achieve stationarity when there is nonstationarity behavior in data. Detecting trend and stationarity in hydrological time series may help us to understand the possible links between hydrological processes and global climate changes. In this study yearly, monthly and daily stream...

متن کامل

Dynamic Modeling for Persistent Event-Count Time Series

Patick T. Brandt is a Visiting Lecturer in Political Science, Indiana University, Woodburn Hall 210, Bloomington, IN 47405 ([email protected]). John T. Williams is Professor of Political Science, Indiana University, Woodburn Hall 210, Bloomington, IN 47405 ([email protected]). Benjamin O. Fordham is Assistant Professor of Political Science, University at Albany, State University of New Yor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014